A method for fine mapping quantitative trait loci in outbred animal stocks.
نویسندگان
چکیده
High-resolution mapping of quantitative trait loci (QTL) in animals has proved to be difficult because the large effect sizes detected in crosses between inbred strains are often caused by numerous linked QTLs, each of small effect. In a study of fearfulness in mice, we have shown it is possible to fine map small-effect QTLs in a genetically heterogeneous stock (HS). This strategy is a powerful general method of fine mapping QTLs, provided QTLs detected in crosses between inbred strains that formed the HS can be reliably detected in the HS. We show here that single-marker association analysis identifies only two of five QTLs expected to be segregating in the HS and apparently limits the strategy's usefulness for fine mapping. We solve this problem with a multipoint analysis that assigns the probability that an allele descends from each progenitor in the HS. The analysis does not use pedigrees but instead requires information about the HS founder haplotypes. With this method we mapped all three previously undetected loci [chromosome (Chr.) 1 logP 4.9, Chr. 10 logP 6.0, Chr. 15 logP 4.0]. We show that the reason for the failure of single-marker association to detect QTLs is its inability to distinguish opposing phenotypic effects when they occur on the same marker allele. We have developed a robust method of fine mapping QTLs in genetically heterogeneous animals and suggest it is now cost effective to undertake genomewide high-resolution analysis of complex traits in parallel on the same set of mice.
منابع مشابه
CALL FOR PAPERS Updates on Mapping Quantitative Trait Loci QTL mapping in outbred populations: successes and challenges
Solberg Woods LC. QTL mapping in outbred populations: successes and challenges. Physiol Genomics 46: 81–90, 2014. First published December 10, 2013; doi:10.1152/physiolgenomics.00127.2013.—Quantitative trait locus (QTL) mapping in animal populations has been a successful strategy for identifying genomic regions that play a role in complex diseases and traits. When conducted in an F2 intercross ...
متن کاملQTL mapping in outbred populations: successes and challenges.
Quantitative trait locus (QTL) mapping in animal populations has been a successful strategy for identifying genomic regions that play a role in complex diseases and traits. When conducted in an F2 intercross or backcross population, the resulting QTL is frequently large, often encompassing 30 Mb or more and containing hundreds of genes. To narrow the locus and identify candidate genes, addition...
متن کاملSimultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks.
We describe a method to simultaneously detect and fine map quantitative trait loci (QTL) that is especially suited to the mapping of modifier loci in mouse mutant models. The method exploits the high level of historical recombination present in a heterogeneous stock (HS), an outbred population of mice derived from known founder strains. The experimental design is an F(2) cross between the HS an...
متن کاملMicrosatellite mapping of quantitative trait loci affecting carcass traits on chromosome 1 in half-sib families of Japanese quail (Coturnix japonica)
The objective of this study was to identify the quantitative trait loci (QTL) affecting carcass traits on chromosome 1 in Japanese quail. The populations comprised of 422 progeny in 9 half-sib families. Phenotypic data on carcass weight, carcass parts, and the internal organs were collected on 422 progeny. Nine half-sib families were genotyped for 8 microsatellite markers covering chromosomes 1...
متن کاملLinkage analysis of microsatellite markers on chromosome 5 in an F2 population of Japanese quail to identify quantitative trait loci affecting carcass traits
An F2 Japanese quail population was developed by crossing two strains (wild and white) to map quantitative trait loci (QTL) for performance and carcass traits. A total of 472 F2 birds were reared and slaughtered at 42 days of age. Performance and carcass traits were measured on all of the F2 individuals. Parental (P0), F1 and F2 individuals were genotyped with 3 microsatellites from quail chrom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 23 شماره
صفحات -
تاریخ انتشار 2000